Edwardson, D. W. et al. Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines. Curr. Drug Metab. 16, 412–426. https://doi.org/10.2174/1389200216888150915112039 (2015).
Google Scholar
Abdel-Qadir, H. et al. A population-based study of cardiovascular mortality following early-stage breast cancer. JAMA Cardiol. 2, 88–93. https://doi.org/10.1001/jamacardio.2016.3841 (2017).
Google Scholar
Hamo, C. E. & Bloom, M. W. Getting to the heart of the matter: An overview of cardiac toxicity related to cancer therapy. Clin. Med. Insights Cardiol. 9, 47–51. https://doi.org/10.4137/cmc.S19704 (2015).
Google Scholar
Koutsoukis, A. et al. Cardio-oncology: A focus on cardiotoxicity. Eur. Cardiol. 13, 64–69. https://doi.org/10.15420/ecr.2017:17:2 (2018).
Google Scholar
Cai, F. et al. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment. Mol. Clin. Oncol. 11, 15–23. https://doi.org/10.3892/mco.2019.1854 (2019).
Google Scholar
Kang, Y. & Scherrer-Crosbie, M. Echocardiography imaging of cardiotoxicity. Cardiol. Clin. 37, 419–427. https://doi.org/10.1016/j.ccl.2019.07.006 (2019).
Google Scholar
Lipshultz, S. E. et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: Pathophysiology, course, monitoring, management, prevention, and research directions: A scientific statement from the American Heart Association. Circulation 128, 1927–1995. https://doi.org/10.1161/CIR.0b013e3182a88099 (2013).
Google Scholar
Michel, L. et al. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: A meta-analysis. Eur. J. Heart Fail. 22, 350–361. https://doi.org/10.1002/ejhf.1631 (2020).
Google Scholar
Lipshultz, S. E. et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J. Clin. Oncol. 23, 2629–2636. https://doi.org/10.1200/jco.2005.12.121 (2005).
Google Scholar
Lakoski, S. G., Jones, L. W., Krone, R. J., Stein, P. K. & Scott, J. M. Autonomic dysfunction in early breast cancer: Incidence, clinical importance, and underlying mechanisms. Am. Heart J. 170, 231–241. https://doi.org/10.1016/j.ahj.2015.05.014 (2015).
Google Scholar
Arab, C. et al. Heart rate variability measure in breast cancer patients and survivors: A systematic review. Psychoneuroendocrinology 68, 57–68. https://doi.org/10.1016/j.psyneuen.2016.02.018 (2016).
Google Scholar
Lončar-Turukalo, T. et al. Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol. Meas. 36, 727–739. https://doi.org/10.1088/0967-3334/36/4/727 (2015).
Google Scholar
Merlet, N. et al. Increased beta2-adrenoceptors in doxorubicin-induced cardiomyopathy in rat. PLoS ONE 8, e64711. https://doi.org/10.1371/journal.pone.0064711 (2013).
Google Scholar
Xu, X. L. et al. Effects of carvedilol on M2 receptors and cholinesterase-positive nerves in adriamycin-induced rat failing heart. Autonomic Neurosci. Basic Clin. 130, 6–16. https://doi.org/10.1016/j.autneu.2006.04.005 (2006).
Google Scholar
Koba, S. Angiotensin II, oxidative stress, and sympathetic nervous system hyperactivity in heart failure. Yonago Acta Med. 61, 103–109. https://doi.org/10.33160/yam.2018.06.002 (2018).
Google Scholar
Rabelo, E. et al. Baroreflex sensitivity and oxidative stress in adriamycin-induced heart failure. 38, 576-580. https://doi.org/10.1161/hy09t1.096185 (2001).
McTiernan, A. et al. Physical activity in cancer prevention and survival: A systematic review. Med. Sci. Sports Exerc. 51, 1252–1261. https://doi.org/10.1249/MSS.0000000000001937 (2019).
Google Scholar
Ghignatti, P. V. C., Nogueira, L. J., Lehnen, A. M. & Leguisamo, N. M. Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: A systematic review with meta-analysis of preclinical studies. Sci. Rep. 11, 6330. https://doi.org/10.1038/s41598-021-83877-8 (2021).
Google Scholar
Grässler, B., Thielmann, B., Böckelmann, I. & Hökelmann, A. Effects of different training interventions on heart rate variability and cardiovascular health and risk factors in young and middle-aged adults: A systematic review. 12. https://doi.org/10.3389/fphys.2021.657274 (2021).
Bhati, P., Singla, D. & Hussain, D. M. Resistance training and modulation of cardiac autonomic control in animal models: A systematic review. Compar. Exercise Physiol. https://doi.org/10.3920/CEP180033 (2018).
Google Scholar
Feitosa, L. A. S. et al. Resistance training improves cardiac function and cardiovascular autonomic control in doxorubicin-induced cardiotoxicity. Cardiovasc. Toxicol. 21, 365–374. https://doi.org/10.1007/s12012-020-09627-w (2021).
Google Scholar
Vargas-Ortiz, K., Pérez-Vázquez, V. & Macías-Cervantes, M. H. Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20112717 (2019).
Google Scholar
Mei, Z. et al. Sirtuins in metabolism, DNA repair and cancer. J. Exp. Clin. Cancer Res. CR 35, 182. https://doi.org/10.1186/s13046-016-0461-5 (2016).
Google Scholar
Onn, L. et al. SIRT6 is a DNA double-strand break sensor. Elife https://doi.org/10.7554/eLife.51636 (2020).
Google Scholar
Meng, F. et al. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. Elife https://doi.org/10.7554/eLife.55828 (2020).
Google Scholar
Cash, S. W. et al. Recent physical activity in relation to DNA damage and repair using the comet assay. J. Phys. Act. Health 11, 770–776. https://doi.org/10.1123/jpah.2012-0278 (2014).
Google Scholar
Zhang, D. Y. & Anderson, A. S. The sympathetic nervous system and heart failure. Cardiol. Clin. 32, 33–vii. https://doi.org/10.1016/j.ccl.2013.09.010 (2014).
Google Scholar
Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 36, 1974–1982b. https://doi.org/10.1093/eurheartj/ehv087 (2015).
Google Scholar
Ferreira, M. J. & Zanesco, A. Heart rate variability as important approach for assessment autonomic modulation. J. Motriz Revista de Educação Física. 22, 3–8 (2016).
Google Scholar
Moguilevski, V., Oliver, J. & McGrath, B. P. Sympathetic regulation in rabbits with heart failure: Experience using power spectral analysis of heart rate variability. Clin. Exp. Pharmacol. Physiol. 22, 475–477. https://doi.org/10.1111/j.1440-1681.1995.tb02049.x (1995).
Google Scholar
Curigliano, G. et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 31, 171–190. https://doi.org/10.1016/j.annonc.2019.10.023 (2020).
Google Scholar
Strongman, H. et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. Lancet 394, 1041–1054. https://doi.org/10.1016/S0140-6736(19)31674-5 (2019).
Google Scholar
Zamorano, J. L. et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 37, 2768–2801. https://doi.org/10.1093/eurheartj/ehw211 (2016).
Google Scholar
Krzesiak, A., Delpech, N., Sebille, S., Cognard, C. & Chatelier, A. Structural, contractile and electrophysiological adaptations of cardiomyocytes to chronic exercise. Adv. Exp. Med. Biol. 999, 75–90. https://doi.org/10.1007/978-981-10-4307-9_5 (2017).
Google Scholar
Schaun, M. I. et al. Preventive physical training partially preserves heart function and improves cardiac antioxidant responses in rats after myocardial infarction preventive physical training and myocardial infarction in rats. Int. J. Sport Nutr. Exerc. Metab. 27, 197–203. https://doi.org/10.1123/ijsnem.2016-0300 (2017).
Google Scholar
Penna, C., Alloatti, G. & Crisafulli, A. Mechanisms involved in cardioprotection induced by physical exercise. Antioxid. Redox Signal. 32, 1115–1134. https://doi.org/10.1089/ars.2019.8009 (2020).
Google Scholar
Liu, J.-L., Kulakofsky, J. & Zucker, I. H. Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. 92, 2403-2408. https://doi.org/10.1152/japplphysiol.00039.2002 (2002).
Hojman, P., Gehl, J., Christensen, J. F. & Pedersen, B. K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 27, 10–21. https://doi.org/10.1016/j.cmet.2017.09.015 (2018).
Google Scholar
Squires, R. W., Shultz, A. M. & Herrmann, J. Exercise training and cardiovascular health in cancer patients. Curr. Oncol. Rep. 20, 27–27. https://doi.org/10.1007/s11912-018-0681-2 (2018).
Google Scholar
Gebruers, N. et al. The effect of training interventions on physical performance, quality of life, and fatigue in patients receiving breast cancer treatment: A systematic review. Support Care Cancer 27, 109–122. https://doi.org/10.1007/s00520-018-4490-9 (2019).
Google Scholar
Ormel, H. L. et al. Predictors of adherence to exercise interventions during and after cancer treatment: A systematic review. Psychooncology 27, 713–724. https://doi.org/10.1002/pon.4612 (2018).
Google Scholar
Witlox, L. et al. Attendance and compliance with an exercise program during localized breast cancer treatment in a randomized controlled trial: The PACT study. PLoS ONE 14, e0215517. https://doi.org/10.1371/journal.pone.0215517 (2019).
Google Scholar
ODPHP, O. o. D. P. a. H. P. Physical Activity Guidelines. (2018).
Bredahl, E. C., Pfannenstiel, K. B., Quinn, C. J., Hayward, R. & Hydock, D. S. Effects of exercise on doxorubicin-induced skeletal muscle dysfunction. Med. Sci. Sports Exerc. 48, 1468–1473. https://doi.org/10.1249/mss.0000000000000926 (2016).
Google Scholar
Murphy, K. T. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am. J. Physiol. Heart Circ. Physiol. 310, H466-477. https://doi.org/10.1152/ajpheart.00720.2015 (2016).
Google Scholar
Watson, R. D., Gibbs, C. R. & Lip, G. Y. ABC of heart failure. Clinical features and complications. BMJ 320, 236–239. https://doi.org/10.1136/bmj.320.7229.236 (2000).
Google Scholar
Chen, J. J., Wu, P.-T., Middlekauff, H. R. & Nguyen, K.-L. Aerobic exercise in anthracycline-induced cardiotoxicity: A systematic review of current evidence and future directions. Am. J. Physiol. Heart Circ. Physiol. 312, H213–H222. https://doi.org/10.1152/ajpheart.00646.2016 (2017).
Google Scholar
Jordan, J. H. et al. Left ventricular mass change after anthracycline chemotherapy. Circ. Heart Fail. 11, e004560. https://doi.org/10.1161/circheartfailure.117.004560 (2018).
Google Scholar
Ferreira de Souza, T. et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC. Cardiovasc. Imaging 11, 1045–1055. https://doi.org/10.1016/j.jcmg.2018.05.012 (2018).
Google Scholar
Tham, E. B. et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: Relationship to exercise capacity, cumulative dose and remodeling. J. Cardiovasc. Magn. Reson. 15, 48–48. https://doi.org/10.1186/1532-429X-15-48 (2013).
Google Scholar
Schüttler, D., Clauss, S., Weckbach, L. T. & Brunner, S. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells 8, 1128. https://doi.org/10.3390/cells8101128 (2019).
Google Scholar
Sturgeon, K. et al. Concomitant low-dose doxorubicin treatment and exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R685-692. https://doi.org/10.1152/ajpregu.00082.2014 (2014).
Google Scholar
Michel, L., Rassaf, T. & Totzeck, M. Biomarkers for the detection of apparent and subclinical cancer therapy-related cardiotoxicity. J. Thorac. Dis. 10, S4282-s4295. https://doi.org/10.21037/jtd.2018.08.15 (2018).
Google Scholar
Sturgeon, K. et al. Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area. Physiol. Rep. https://doi.org/10.14814/phy2.12406 (2015).
Google Scholar
Wang, F. et al. Aerobic exercise during early murine doxorubicin exposure mitigates cardiac toxicity. J. Pediatr. Hematol. Oncol. 40, 208–215. https://doi.org/10.1097/mph.0000000000001112 (2018).
Google Scholar
Yang, H.-L. et al. Early moderate intensity aerobic exercise intervention prevents doxorubicin-caused cardiac dysfunction through inhibition of cardiac fibrosis and inflammation. Cancers (Basel) 12, 1102. https://doi.org/10.3390/cancers12051102 (2020).
Google Scholar
Ugander, M., Carlsson, M. & Arheden, H. Short-axis epicardial volume change is a measure of cardiac left ventricular short-axis function, which is independent of myocardial wall thickness. 298, H530–H535. https://doi.org/10.1152/ajpheart.00153.2009 (2010).
Zerbib, Y., Maizel, J., Slama, M. J. J. O. E. & Medicine, C. C. Echocardiographic assessment of left ventricular function. J. Emerg. Crit. Care Med. 3(33). https://doi.org/10.21037/jeccm.2019.07.05 (2019).
Caru, M. et al. Doxorubicin treatments induce significant changes on the cardiac autonomic nervous system in childhood acute lymphoblastic Leukemia long-term survivors. Clin. Res. Cardiol. 108, 1000–1008. https://doi.org/10.1007/s00392-019-01427-9 (2019).
Google Scholar
Hayano, J. & Yuda, E. Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 38, 3. https://doi.org/10.1186/s40101-019-0193-2 (2019).
Google Scholar
Potočnik, N., Perše, M., Cerar, A., Injac, R. & Finderle, Ž. Cardiac autonomic modulation induced by doxorubicin in a rodent model of colorectal cancer and the influence of fullerenol pretreatment. PLoS ONE 12, e0181632–e0181632. https://doi.org/10.1371/journal.pone.0181632 (2017).
Google Scholar
Vasić, M. et al. Cardiovascular variability and β-ARs gene expression at two stages of doxorubicin—Induced cardiomyopathy. Toxicol. Appl. Pharmacol. 362, 43–51. https://doi.org/10.1016/j.taap.2018.10.015 (2019).
Google Scholar
Cardinale, D. et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131, 1981–1988. https://doi.org/10.1161/circulationaha.114.013777 (2015).
Google Scholar
Zeiss, C. J. et al. Doxorubicin-induced cardiotoxicity in collaborative cross (CC) mice recapitulates individual cardiotoxicity in humans. G3 (Bethesda, Md.) 9, 2637–2646. https://doi.org/10.1534/g3.119.400232 (2019).
Google Scholar
Florescu, M., Cinteza, M. & Vinereanu, D. Chemotherapy-induced cardiotoxicity. Maedica 8, 59–67 (2013).
Perez, I. E., TaverasAlam, S., Hernandez, G. A. & Sancassani, R. Cancer therapy-related cardiac dysfunction: An overview for the clinician. Clin. Med. Insights. Cardiol. 13, 1179546819866445–1179546819866445. https://doi.org/10.1177/1179546819866445 (2019).
Google Scholar
Pearson, M. J. & Smart, N. A. Exercise therapy and autonomic function in heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 23, 91–108. https://doi.org/10.1007/s10741-017-9662-z (2018).
Google Scholar
Masroor, S., Bhati, P., Verma, S., Khan, M. & Hussain, M. E. Heart rate variability following combined aerobic and resistance training in sedentary hypertensive women: A randomised control trial. Indian Heart J. 70, S28–S35. https://doi.org/10.1016/j.ihj.2018.03.005 (2018).
Google Scholar
Sessa, F. et al. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY) 10, 166–177. https://doi.org/10.18632/aging.101386 (2018).
Google Scholar
Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743. https://doi.org/10.1038/s41569-018-0065-1 (2018).
Google Scholar
Fu, Q. & Levine, B. D. Exercise and the autonomic nervous system. Handb. Clin. Neurol. 117, 147–160. https://doi.org/10.1016/b978-0-444-53491-0.00013-4 (2013).
Google Scholar
McCorry, L. K. Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 71, 78. https://doi.org/10.5688/aj710478 (2007).
Google Scholar
Curigliano, G. et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann. Oncol. 23(Suppl 7), vii 155-166. https://doi.org/10.1093/annonc/mds293 (2012).
Google Scholar
Agnoletto, M. H. et al. Association of low repair efficiency with high hormone receptors expression and SOD activity in breast cancer patients. Clin. Biochem. 40, 1252–1258. https://doi.org/10.1016/j.clinbiochem.2007.08.017 (2007).
Google Scholar
Radak, Z. et al. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 35, 101467. https://doi.org/10.1016/j.redox.2020.101467 (2020).
Google Scholar
Bartlett, J. D., Close, G. L., Drust, B. & Morton, J. P. The emerging role of p53 in exercise metabolism. Sports Med. (Auckland, N.Z.) 44, 303–309. https://doi.org/10.1007/s40279-013-0127-9 (2014).
Google Scholar
Mendes, K. L., Lelis, D. D. F. & Santos, S. H. S. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev. 38, 98–105. https://doi.org/10.1016/j.cytogfr.2017.11.001 (2017).
Google Scholar
Yang, K. & Dong, W. SIRT1-related signaling pathways and their association with bronchopulmonary dysplasia. Front. Med. 8, 595634. https://doi.org/10.3389/fmed.2021.595634 (2021).
Google Scholar
Alavi, S. S. et al. Involvement of Sirtuins and Klotho in cardioprotective effects of exercise training against waterpipe tobacco smoking-induced heart dysfunction. Front. Physiol. 12, 680005. https://doi.org/10.3389/fphys.2021.680005 (2021).
Google Scholar
da Silva, A. L. G. et al. Effect of physical exercise on the level of DNA damage in chronic obstructive pulmonary disease patients. ISRN Pulmonol. 2013, 907520. https://doi.org/10.1155/2013/907520 (2013).
Google Scholar
Abramson, J. H. WINPEPI updated: Computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innovat. 8, 1. https://doi.org/10.1186/1742-5573-8-1 (2011).
Google Scholar
Anjos Ferreira, A. L. et al. Effect of lycopene on doxorubicin-induced cardiotoxicity: An echocardiographic, histological and morphometrical assessment. 101, 16–24. https://doi.org/10.1111/j.1742-7843.2007.00070.x (2007).
Moura, L. et al. Effect of pequi shell ethanolic extract on glutathione reductase activity in rats exposed to doxorubicin cardiotoxicity. Braz. J. Veterinary Med. https://doi.org/10.29374/2527-2179.bjvm89019 (2018).
Google Scholar
Kang, Y. et al. Assessment of subclinical doxorubicin-induced cardiotoxicity in a rat model by speckle-tracking imaging. Arq. Bras. Cardiol. https://doi.org/10.5935/abc.20170097 (2017).
Google Scholar
Marschner, R. A. et al. Short-term exercise training improves cardiac function associated to a better antioxidant response and lower type 3 iodothyronine deiodinase activity after myocardial infarction. PLoS ONE 14, e0222334. https://doi.org/10.1371/journal.pone.0222334 (2019).
Google Scholar
Peron, A. P., Saraiva, R. M., Antonio, E. L. & Tucci, P. J. Mechanical function is normal in remanent myocardium during the healing period of myocardial infarction–despite congestive heart failure. Arq. Bras. Cardiol. 86, 105–112. https://doi.org/10.1590/s0066-782×2006000200005 (2006).
Google Scholar
Li, F. et al. Kinetics, moderators and reference limits of exercise-induced elevation of cardiac troponin T in athletes: A systematic review and meta-analysis. 12. https://doi.org/10.3389/fphys.2021.651851 (2021).
Kumar, N. T., Liestøl, K., Løberg, E. M., Reims, H. M. & Mæhlen, J. Postmortem heart weight: relation to body size and effects of cardiovascular disease and cancer. Cardiovasc. Pathol. 23, 5–11. https://doi.org/10.1016/j.carpath.2013.09.001 (2014).
Google Scholar
Smith, J. R. et al. The year of the rat: The rat genome database at 20: A multi-species knowledgebase and analysis platform. Nucleic Acids Res. 48, D731–D742. https://doi.org/10.1093/nar/gkz1041 (2020).
Google Scholar